Model Checking Generic Container
Implementations *

Matthew B. Dwyer and Corina S. Pasareanu

Kansas State University,
Department of Computing and Information Sciences,
Manhattan KS 66506, USA

{dwyer,pcorina}@cis.ksu.edu

Abstract. Model checking techniques have been successfully applied to
the verification of correctness properties of complex hardware systems
and communication protocols. This success has fueled the application of
these techniques to software systems. To date, those efforts have been
targeted at concurrent software whose complexity lies, primarily, in the
large number of possible execution orderings of asynchronously executing
program actions. In this paper, we apply existing model checking tech-
niques to parameterizable implementations of container data structures.
In contrast to most of the concurrent systems that have been studied in
the model checking literature, the complexity of these implementations
lies in their data structures and algorithms. We report our experiences
model checking specifications of correctness properties of queue, stack
and priority queue data structures implemented in Ada.

Keywords : Model checking, temporal logic, assume-guarantee reasoning, generic
containers

1 Introduction

The past three decades have seen the development of a large number of formal
methods for specifying the intended computational results of a software compo-
nent or system. Clearly, the practical utility of a formal method must be assessed
with respect to its ability to describe and support reasoning about the correct-
ness of realistic software systems and a number of efforts in this area have been
made (e.g., [1,7]). Short of such case studies, a basic test of a formal method is
its ability to address certain standard examples; one class of standard examples
are container data types (e.g., stacks, queues, sets).

More recently, in the past decade, a number of formal methods researchers
have focused on a class of specification formalisms and automated specification
checking techniques referred to as finite-state verification (FSV) approaches.
Rather than focusing on specification of the correct results of a computation,

* Supported in part by NSF under grants CCR-9703094 and CCR-9708184, by NSF
and DARPA under grant CCR-9633388, and by NASA under grant NAG-02-1209.



FSV methods specify correctness properties related to, perhaps internal, system
behaviors. Such behaviors might include, for example, correctness of component
coordination, safety of data access, and guarantee of progress in performing
a computation. These techniques, in particular model checking, have enjoyed
success in finding defects in and verifying properties of real hardware systems
(e-g., [4,9,20]). Attempts have been made to capitalize on the success of model
checking by applying it to selected software domains (e.g., communication proto-
cols [16] and control systems [17]). Control software, typically, manipulate small
amounts of data that influence system behavior. More general software systems,
however, may manipulate large amounts of data and use that data to control
system behavior. It remains to be seen whether FSV approaches will be generally
effective for such data-intensive software.

In this paper, we assess a representative of the FSV approaches, namely lin-
ear temporal logic (LTL) [19] model checking using SPIN [16], in terms of its
ability to support reasoning about the standard container implementations on
which formal methods are often judged. Model checking is a technique for sound
and complete reasoning about finite-state transition systems. To enable model
checking of software, however, completeness is sacrificed for tractability and be-
cause software systems are, in general, not finite state. Our methodology [10]
uses correctness preserving abstractions of system components to render model
checking sound. We believe that such model checking complements traditional
formal methods and testing as a software quality assurance technique. Like test-
ing, model checking is an automated technique. Thus, unlike most traditional
formal methods which require some user interaction, model checking can be ap-
plied by practitioners with little knowledge of proof construction strategies. Like
traditional formal methods, sound model checking when successful provides a
guarantee that the system satisfies the property being checked; testing is unable
to guarantee the absence of errors with respect to a given property. While a failed
test is a sure indication of a defect in the system, it provides no guidance to help
locate the cause of the defect. In contrast, both proof-based methods and model
checking produce a counter-example, which traces an example system execution
that violates the property of interest. Analysis of such counter-examples often
leads directly to the cause of the erroneous system behavior. Given these qual-
itative differences between model checking and other methods, our goal is not
to compare classes of software validation approaches, but to assess the extent to
which model checking can be applied to validate and detect defects in existing
container implementations.

We use tools to automate the process of translating a program written in Ada
to a safe finite-state model rendered in the input format of SPIN. For this reason,
we selected implementations of generic queue, stack and priority queue data
types written in Ada. We specified a variety of correctness properties of these
abstractions in LTL and checked them using SPIN. Our results are encouraging
and suggest that model checking tools can be effectively applied to detect defects
in such implementations. We report these results and describe the process we
followed to carry out this study.



In the following section we discuss relevant background material. The con-
struction of finite-state models of the container implementations is outlined in
Section 3. Section 4 describes the container implementations and Section 5 de-
scribes the correctness properties that we analyze. We then present, in Section 6,
the results of our study. Section 7 describes this study’s limitations and suggests
directions for further study and Section 8 concludes.

2 Background and Related Work

In this section, we give a brief overview of temporal logic and model checking.
We focus on the differences between this approach to system specification and
verification and more traditional formal methods.

2.1 Traditional Formal Methods

Traditionally, formal methods have been designed to support the precise de-
scription of the intended results of a computation. A specification is written
such that a conforming implementation is guaranteed to produce the correct
result; a specification defines a sufficient condition for correctness. There are a
wealth of formal methods including model-based (e.g., Z [8]), algebraic (e.g.,
Larch [18]), and trace-based (e.g., [15]) methods. While these methods differ in
their formal underpinnings, each is expressive enough to describe computations
over unbounded data domains, such as the naturals. Thus, each is capable of
specifying container data structures. In fact, specifications for stacks and queues
are often given as examples to illustrate a method [8,15,18].

Trace specifications [15] are particularly relevant to the work described in this
paper. These are abstract specifications of the observable interface behavior of a
software component. A trace specification defines the legal sequences of calls to
operations in a component’s interface and the computational effects of such se-
quences. Hoffman and Snodgrass distinguish three different components of such
a trace specification: legality, equality, and value. The specifications we describe
in Section 5 state necessary conditions for such trace components, concentrating
primarily on the legality of a sequence of calls. Like the stack and queue specifi-
cations presented in [15], our stack and queue specifications are nearly identical,
differing only in the names of operations and element ordering. We note that
our specifications model invocation and return from a procedure as independent
atomic actions, whereas traces model them as a single action. We do this to
enable specification of properties of concurrent systems where multiple calls to
a single procedure may co-execute.

2.2 Temporal Logic

For model checking, specifications are written in a propositional temporal logic.
These logics are less expressive than the formalisms used in traditional formal
methods (e.g., they cannot express properties of unbounded value sets). For this



reason model checking focuses on specifications of necessary conditions for cor-
rectness, rather than complete specification of a system’s computational effects.

We use linear temporal logic in our work because it supports unit-level model
checking, through filter-based analysis [11,12], and it is supported by a robust
tool, SPIN [16]. In LTL a pattern of states is defined that characterizes all possi-
ble behaviors of the finite-state system. We describe LTL operators using SPIN’s
ASCII notation. LTL is a propositional logic with the standard connectives &&,
[, =>, and !. It includes three temporal operators: <>p says p holds at some
point in the future, [1p says p holds at all points in the future, and the binary
pUg operator says that p holds at all points up to the first point where ¢ holds.
An example LTL specification for the response property ”all calls to procedure
P are followed by a return from P” is [] (call_P -> <>return_P).

2.3 Model Checking Software

In model checking, one describes software as a finite-state transition system,
specifies properties with a temporal logic formula, and checks, exhaustively, that
the sequences of transition system states satisfy the formula. In principle, model
checking can be applied to any finite-state system. For software one cannot
render a finite-state system that exactly models the software’s behavior, since,
in general, software will not be finite-state. Even for finite-state software the
size of a precise finite-state model will, in general, be exponential in the number
of independent components (i.e., variables and threads of control). For these
reasons, we use abstracted finite-state system models that reflect the execution
behavior of the software as precisely as possible while enabling tractable analysis.
Existing model checkers, such as SPIN, do not accept Ada source code. In
fact, the semantic gap between Ada and a model checker input language, such as
SPIN’s Promela, is significant. To bridge this gap, and achieve tractable model
checking, we perform an “abstract compilation” of Ada source code to a tar-
get program in Promela. This compilation is guided by the LTL formula to
be checked with the result that target program is sound with respect to model
checking of that formula. In this setting, positive model checks results for a spec-
ification imply conformance of the original Ada implementation to that specifi-
cation. A failed model check result is a trace of the target program that violates
the specified property called a counter-example. Analysis of the counter-example
indicates one of two situations: (i) the implementation is defective with respect
to the specified property, or (7) the abstractions used in the compilation of the
Promela program are too imprecise for checking the specified property. In the
second case, the counter-example provides guidance as to which abstractions
must be strengthened to enable a successful model check or the detection of a
defect. This compilation process is discussed in more detail in Section 3.

2.4 Filter-based Analysis

It is common in software validation and verification to reason about parts of
an implementation in isolation (e.g., unit testing). For unit-level software model



LTL Property

Specifications

Al-variable Proposition

bindings definitions
\ ¢ Promela SPIN

Ada System Al-ased Ada2SEDL INCA \ Trueor

—] .
Source Completor Ada Partial Evaluator Ada SEDL \ Counter-example
? . TRANS | sMVv
Configuration
Information ?
CTL Property
Specifications

Fig. 1. Model Construction Process

checking, we adopt the assume-guarantee paradigm [22] in which a system de-
scription consists of two parts: a model of guaranteed behavior of the software
unit and a model of the assumed behavior of the environment in which that unit
will execute. In the work described in this paper, we define an Ada driver pro-
gram that approximates the behavior of all possible contexts in which a software
unit may be invoked; we discuss such driver programs in the next section. Model
checking of properties of the software unit combined with the driver is sound
with respect to any usage of the unit.

Many software components make assumptions about the context in which
they will be used (e.g., that a called routine will eventually return). Such assump-
tions can be incorporated into LTL model checking using SPIN [11,12] as follows:
given a property P and filters Fy, Fs, ... F, that encode assumptions about the
environment, we model check the combined formula (F}&&Fy&& . .. &&F,) —
P. We refer to the individual F; as filters and to the combined formula as a
filter-formula.

One concern with this method is that users may make invalid assumptions.
We address this in two ways. First, we check that the assumptions are not incon-
sistent by checking that there exists an execution that satisfies the filters; with
SPIN this is done by attempting to falsify a never claim for the conjoined filters.
Second, when a user wishes to use the fact that a given software component satis-
fies P in the analysis of the larger system we model check (F1&& Fr&& . . . && F,)
on the sub-systems that use the component; this verifies that the context satisfies
the assumptions.

3 Model Construction

In this section, we describe the process of compiling programs to descriptions
suitable for model checking. We apply the methodology described in [12] which
is supported by the toolset illustrated in Figure 1. Incompletely defined Ada
source code is fed to a component which constructs a driver program to complete
its definition. This completed program is then systematically abstracted and
simplified using abstract interpretation and partial evaluation techniques. The
resulting program is converted to the input language, called SEDL, of the INCA



procedure Driver() is
choice : Integer;
theObject_Type : Object_Type;
begin
loop
case choice is
when 1 => Insert(theObject_Type) ;
when 2 => thelbject_Type := Remove;
when 3 => null;
when others => exit;
end case;
end loop;
end stub;

Fig. 2. Driver Source Code

toolset [2,5]. INCA accepts definitions of the states and events that form the
propositions used in specifications and embeds those propositions into the model
checker input. A tutorial on the use of this toolset is available [13].

3.1 Completing Partial Systems

A complete Ada program is constructed by defining a driver program and stub
routines for referenced components that are external to a given partial Ada
program. This is similar to a unit-testing approach, except that the stubs and
driver are capable of calling the component’s public operations in any possi-
ble sequence; this simulates any possible usage scenario that may arise for the
component. Together, the stubs, driver and component under analysis form a
complete Ada application.

To simplify the discussion, we assume that a partial system is encapsulated in
a package with public procedures that can be called from outside the package and
that we are only interested in the behavior of the partial system (not the envi-
ronment). A driver program is generated that will execute all possible sequences
of public procedure calls. The driver program defines local variables to hold pa-
rameter values. Figure 2 illustrates a driver for a partial system with an Insert
procedure and a Remove function. Note that the choice and theObject_Type
variables will be subsequently abstracted; choice will be abstracted to model
nondeterministic choice of the case statement alternatives. Stub routines are
defined in a similar way.

Ultimately, in order to generate a finite-state model from source code all
layering of the container implementations must be removed (e.g., the calls to
Insert and Remove in Driver must be inlined). The INCA tools perform inlining
of non-recursive procedure calls'. The tools are not able to perform generic
instantiations, so for our examples this was done by hand.

1 A limitation of our current approach is that it does not treat recursive procedures.



3.2 Incorporating Abstractions

The methodology then proceeds by binding abstract interpretations [6] to se-
lected program variables. A variety of sound abstract interpretations have been
defined for different data types. Currently, a set of heuristics are applied to select
the variables that are to be abstracted and the specific abstract interpretations
to be used for each such variable [12].

The machinery of partial evaluation [14] is used to propagate these abstract
variable definitions throughout the program’s definition. In this way, the state
space of the finite-state transition system constructed for the program can be
safely reduced to a size that enables efficient model checking. For the con-
tainer implementations we studied, almost all variables were defined over discrete
ranges (e.g., sub-range types for array indices, booleans); for those variables no
abstractions were applied.

The container implementations are parameterized by the type of contained
data elements. The properties we check of those implementations, which are
described in Section 5, do not specify behavior in terms of data element val-
ues, rather they refer to the identity of the data elements. Some properties are
related to the ordering of two data elements. To construct a safe model that
supports reasoning about such properties we use the 2-ordered data abstrac-
tion [12]. This defines data elements in terms of their identity where two elements
(named d1,d2) are distinguished from all others (named ot). For example, the
Object_Type in Figure 2 is replaced by the enumerated type (d1,d2,0t) which
implements this abstraction. Since container implementations only assign data
elements and compare them based on identity, the 2-ordered abstraction allows
us to treat containers as data-independent systems [23] and prove order related
specifications under the assumption that d1 and d2 are input to the container
at most once. These proofs generalize to any pair of user-defined data elements.

3.3 Specializing Source Code

Partial evaluation can also produce a specialized version of the software system
when supplied with information by the user. For systems with dynamically sized
data structures it is often the case that specialization is required to place an
upper-bound on the number of dynamic objects to allow a finite-state model to
be constructed. While this reduces the generality of any property proven of that
model, in practice it preserves much of the effectiveness of model checking for
defect detection.

The container implementations we consider in our study accept a single con-
structor parameter that pre-allocates storage for holding all data. We constructed
drivers which invoked the constructor with small size values (e.g., 3) and checked
properties of the resulting models.

4 The Containers

The Scranton Generic Data Structure Suite [3] is a publicly available collection
of over 100 Ada packages that implement a number of variations of list, queue,



stack, heap, priority queue, binary and n-ary tree data structures and algorithms
on those structures. We selected three specific data structure implementations
from version 4.02 of this collection as the subject of our study: queue pt_pt,
stack_pt_pt, and priority_queue_lpt_1pt2. The queue and stack are imple-
mented using support packages which provide list and iterator implementations.
The priority queue is implemented using underlying heap and iterator imple-
mentations. The stack, queue, and priority queue implementations are generic
packages requiring a type parameter for the data to be stored in the container.
The priority queue also requires a type for the priority of a contained data item
as well as an ordering operation, <, on the priority type. The queue and stack
implementations both allocate a fixed-size array of the appropriate object type
for storage of data. The priority queue is implemented on top of an array-based
heap implementation; three levels of generic package instantiation are required
to reveal the structure of the concrete implementation. The queue and stack
container types have associated iterator packages which support iteration in
container-order (TopDown iteration) or in reverse-container-order (Bottom Up
iteration). Iterators require a user defined call-back routine (Process) that is
invoked for each datum stored in the container.

To denote the different models, we use s, q, p for the stack, queue and priority
queue packages in isolation. The queue with forward and backward iterators re-
quired different models qt and gb, respectively. The stack with iterator required
a single model si. Finally, each of these models can be scaled for a fixed maxi-
mum number of contained elements, e.g., s(3) is a stack of at most 3 elements.

5 The Properties

As discussed in Section 2, we cannot hope to specify the complete behavior of the
container abstractions in LTL. Instead we focus on several crucial correctness
properties of these abstractions. We group these in three areas: containment,
order, and observation. Containment properties are related to whether a con-
tainer implementation has knowledge of data items that have been put into it
and not yet taken out of it. Order properties are related to the order in which
data items can be removed from or observed in a container (e.g., that priority
ordering, via <, is observed). Observation properties are related to the ability
of operators to distinguish relevant features of the state of the container (e.g,
whether a container is empty or not).

We wrote specifications in each of these categories for the three container im-
plementations. In writing specifications one must select a level of abstraction at
which to describe system behavior. For our study, we chose the package interfaces
for the containers. Specifically, for our LTL specifications we define propositions
that describe calls to container operations with specific input parameter values
and returns from container operations with specific output parameters. We il-
lustrate the syntax for the names of these propositions by way of example. For

2 The naming scheme indicates whether the type of the contained data and the in-
stantiated container itself is private, pt, or limited private, 1pt.



the following procedure declaration:
procedure And(x,y : in Boolean; r : out Boolean)
we would have a number of propositions, including;:

call_And representing any call to And

return And representing any return from And

call And(true,false) representing any call to And with x=true and y=false
call And(,false) representing any call to And with y=false

return And(false) representing any return from And with r=false

Function return values are considered to be the last output parameter. With
these propositions we can state that ”Calling And with true parameters should
return true” as
[1(call_And(true,true) -> !return_And U return_And(true))

This states that any call to And with true parameters must be followed by a
return from And with the value true and that no other return from And can in-
tervene between the the designated call and return. Our writing of specifications
in LTL was greatly simplified by use of a specification patterns system [10]; the
above specification is an instance of the global constrained response pattern.

Figure 3 illustrates a sampling of the specifications that were checked in our
study; space limitations prohibit showing all of the specifications. There are 5
basic properties specified. Each of these properties has a slightly different in-
tended semantics depending on the container being checked; we use q, s, and
p in the property names to indicate queue, stack and priority queue versions,
respectively. The containment specifications, (1), vary depending on whether
forward or backward iteration is performed and on the name of the container in-
sert(remove) operation Enqueue or Push(Dequeue or Pop) (e.g., (1fq) and (1bs)).
For observation specifications, (2-3), only the names of the insert(remove) opera-
tions vary. For ordering specifications, (4-5), the modifications are more complex.
The order of returned data for the queue and stack are reversed (e.g., (5q) (not
shown) and (5s)). The order of dequeued data for the priority queue depends
only on the priority value of a datum, thus, we specify the same return sequence
regardless of insertion order (e.g., (5p21) and (5p12) (not shown)). There is an
assumption about data items d1 and d2 that is important for reasoning about
the order related properties; this assumption is discussed in the next section, In
total there are 18 LTL specifications for variations of the 5 basic properties.

6 Analysis Results

A selection of the specifications we checked was given in Section 5. All model
checks were performed using SPIN, version 3.09, on a SUN ULTRAS5 with a
270Mhz UltraSparc Ili and 128Meg of RAM (machine 270) or on a SUN Enter-
prise 4000 with a 168Mhz UltraSparc II and 512Meg of RAM (machine 168).
Figure 4 gives the data for each of the model checking runs; the transition sys-
tem model used for the run is given®. We report the elapsed time for running

3 Detailed description of the transition systems is published as a case-study at
http://www.cis.ksu.edu/santos



(1fq) If a datum is enqueued, and not dequeued, then forward iteration will invoke
the iterator call-back with that datum, unless the iteration is terminated.
[1(call_Enqueue(dl) && ((!'return_Dequeue(dl)) U call_Top Down) ->
<>(call_TopDown && <>(call_Process(dl) || return Process(,false))))

(1bs) If a datum is pushed, and not popped, then forward iteration will invoke
the iterator call-back with that datum, unless the iteration is terminated.
[1(call_Push(dl) && ((!return_Pop(dl)) U call Bottom Up) ->
<>(call Bottom Up && <>(call Process(dl) || return_ Process(,false))))

(29) An enqueue without a subsequent dequeue can only be followed by
a call to empty returning false.
[1(call Enqueue && (!return Dequeue U call Empty) ->
<>(call Empty && <>return Empty(false)))

(3p) Between an enqueue of a datum and a call to empty returning true
there must be a dequeue returning that datum.
[1((call_Enqueue(dl) && <> return_Empty(true)) ->
(!return Empty(true) U (return Dequeue(dl))))

(4fq) If a pair of data are enqueued, and not dequeued, then forward iteration will
invoke the iterator call-back with the first datum then the second,
unless the iteration is terminated.

[1((call_Enqueue(dl) && ((!return Dequeue(dl)) U (call_Enqueue(d2) &&
((!return Dequeue(dl) && !'return Dequeue(d2) U call_Top Down)))) ->
<>(call_TopDown && <>((call_Process(dl) &% <>call Process(d2)) ||

return_Process(,false))))

(5s) If a pair of data are pushed then they must be popped in reverse order,
if they are popped.
[1((call Push(dl) && (!return Pop(dl) U call Push(d2))) ->
(!'return Pop(dl) U (return_Pop(d2) || [](!return Pop(di)))))

(5p21) If a pair of data are enqueued in reverse-priority order, then they must
dequeued in priority order (Priority(d1) >Priority(d2)).
[1((call_Enqueue(d2) && ((!return Dequeue(d2)) U (call_Enqueue(d1l)))) ->
(!return Dequeue(d2) U (return Dequeue(d1) || [1 ('return_Dequeue(d2)))))

Fig. 3. LTL Specifications

SPIN to convert LTL to the SPIN input format, to compile the Promela into a
model checker, and to execute that model checker. The model construction tools
were run on an AlphaStation 200 4/233 with 128Meg of RAM. The longest time
taken to convert completed Ada to SEDL was for the model of a priority queue
of size 3; it took 26.7 seconds. Generating Promela from the SEDL can vary due
to differences in the predicate definitions required for different properties. The
longest time taken for this step was for the model of the queue of size 2; it took
129.3 seconds.



|Property | Time |Result | Model|Machz'ne |
(1fq) 0.2, 54:12.9, 7.6 false | qt(2) | 270
(fqf) | 0.9, 1:43:36.2, 9.4 | true | qt(2)| 270
(1bq) 0.1, 54:39.9, 7.6 false [gb(2)| 270
(1bgf) | 1.0, 1:27:39.9, 13.9 | true |gb(2)| 270
(1fs) 0.2, 1:12.6, 0.1 false | si(2) | 270
(fsf) | 0.9, 201.6, 02 | true | si(2) | 270
(1bs) 0.2, 1:12.2, 0.2 false | si(2) 270
(1bsA) 0.9, 1:53.1, 0.2 true | si(2) | 270
(2q) 0.1, 26.1, 0.2 true | q(2) 270
(2s) 0.1, 23.6, 0.2 true | s(3) 270
(2p) 0.1, 21.2, 0.1 true | p(3) 270
(3q) 0.1, 14.0, 0.1 true | q(2) 270
(3s) 0.1,14.1, 0.1 true | s(3) 270
(3p) 0.1, 10.4, 0.1 true | p(3) 270
(4fq) 6.9, 7:57:43.9, 12.6 | false | qt(2) 168
(4fqf) |1:59.5,11:41:56.9, 37.0| true | qt(2) 168
(4bq) | 8.5, 7:44:51.6, 14.4 | false |gb(2)| 168
(4bqg-f) (1:27.8, 9:40:58.7, 27.5| true |gb(2)| 168
(4fs) 6.7, 7:08.5, 0.2 false | si(2) | 270
(4fsf) | 1:24.6, 10:45.2, 1.1 | true | si(2) | 270
(4bs) 8.8, 7:12.1, 0.2 false | si(2) 270
(4bsf) | 2:00.8, 10:35.6, 0.7 | true | si(2) | 270
(5q) 0.1, 19.0, 0.1 false | q(2) 270
(5qf) | 11:57.5, 15:44.2, 2.6 | true | q(2) 270
(5s) 0.2, 25.5, 0.1 false | s(3) 270
(5s1) 9:34.9, 13:03.4, 3.6 | true | s(3) 270
(5p12) 0.1,11.9, 0.1 true | p(3) 270
(5p21) 0.2, 11.6, 0.1 true | p(3) | 270

Our container models make no assumptions about the way that the container
operations are invoked (e.g., number of times, order of invocation). The iterator
call-back Process is assumed to be data-independent. To boost precision in
checking certain properties, we code assumptions about the required behavior of
the driver or stub as a filter and then model checked the filter-formulae (denoted

by ” 7 in the table).

For example, analysis of the counter example provided by SPIN for specifi-
cation (1fq) showed that the result is false because it is possible for the stub for
Process to never return. Enforcing the reasonable assumption that the iterator

Fig. 4. Performance Data

call-back always returns, yields the filter-formula, (1fq_f):

[1(call_Process —-> <>return_Process) ->

[1((call_Enqueue(dl) && (!return_Dequeue(dl) U call_Top_Down)) ->
<>(call_Top_Down && <>(call_Process(dl)

The same filter was used for other properties of type (1) and (4).

|| return_Process(,false))))



The use of filters in properties of type (5) was required since the 2-ordered
data ATl incorporated in the model is only guaranteed to be safe under the
assumption of a single insertion of each data item into the container. For example,
the filter-formula (5s_f) is:

([0 (xreturn_Push(d1l) -> [1(!call_Push(d1))) &%
[1 (return_Push(d2) -> [1(!'call_Push(d2)))) ->
[1((call_Push(dl) && (!return_Pop(dl) U call_Push(d2))) ->
('return_Pop(dl) U (return_Pop(d2) || [1(!'return_Pop(d1)))))

These results are consistent with previous work on filter-based analysis [12,
21]. When filters are required they are relatively few and simple. For the most
part (ignoring SPIN compile times), this study shows that the total time required
to model check properties of container implementations is on the order of a few
minutes. We discuss the compile-time issue in the next section.

7 Discussion and Future Work

While we believe that our results indicate the potential for model checking to
be an effective quality assurance technique for a broad class of software systems,
there are a number of clear limitations to our study.

7.1 Scaling Containers

We believe that the results of the previous section bode well for using model
checking techniques for reasoning about software systems, but, there remain sig-
nificant questions about its ability to scale to large systems. We used containers
of size 2 and 3 for the bulk of our model checks. These are the smallest sizes
that one would consider using for reasoning about order properties. When we
increased container size to 4 for the priority queue, model generation and check
times increased by a factor of 3. For stack and queue containers of size 4 the
model generation tools ran for 10 hours before we stopped them. As one would
expect there is a very rapid growth in the size of the state space as container size
increases. Since the model generation tools expand parts of this state space they
require significant amounts of memory. We believe that memory limitations were
one cause of the significant slowdown in generation time with increasing size. Fu-
ture experiments with large-memory machines will help address this question.
Our model generation tools (i.e. INCA) were designed for reasoning about
synchronization properties of concurrent systems [5]. Such systems typically have
little data that is used to control the pattern of inter-process synchronization.
Given these requirements it was a reasonable design decision to encode all data
local to a single process into the control flow of that process. Unfortunately, for
data intensive systems like containers, this causes an enormous expansion in the
program’s control flow. This is why the Promela compile-times in Figure 4 are
so large (nearly 12 hours for (4fq_f)). It is important to understand that this
is an artifact of the model construction process and not an inherent limitation
of SPIN. To illustrate this, we checked the queue properties of type (4) on a



model that was hand translated from Ada to Promela (converting Ada variables
into Promela variables). The effect was dramatic, for (4fqf) Promela compile-
time was 4.1 seconds and model check time dropped to 22.3 seconds. Future
versions of model generation tools will need to define their mappings with such
performance issues in mind.

A variety of different model checking techniques have been developed. Given
the data-intensive nature of container implementations we wondered whether
a different model checking technique might work better. In particular, whether
SMV [20] and its use of OBDD-based encodings of transition systems might be
effective in compactly representing the data state-space of the container mod-
els. INCA generates very efficient input models for SMV. We re-ran all of the
priority queue property model checks using SMV 2.5 on machine 270. Model
generation time was 2.2 seconds and for the (5p12) and (5p21) properties model
check time was 0.7 seconds. It appears that SMV may be more effective than
SPIN for checking properties of this kind of system. Unfortunately, SMV’s speci-
fication language cannot easily incorporate filter-formula and that is a significant
limitation for assumption-based validation of partial software systems.

7.2 Dynamism in Implementations

Many container implementations do not pre-allocate storage for their contents,
rather they dynamically allocate that storage as needed. To check properties of
such implementations we need to incorporate a safe abstraction of allocation and
reclamation of heap storage. We are investigating the use of a scalable bounded
heap abstraction that allows allocation and deallocation of data and tracks the
state of the heap. Whether the cost, in the size of the finite-state system model
and consequent model check time, is prohibitive is the subject of future empirical
study.

7.3 Defect Detection

While model checking is capable of verifying properties of software, its main
benefit may be as a fault-detection technique. Fortunately, for many systems
faults are exhibited in small system sizes where application of model checking is
most cost-effective.

To illustrate this we seeded a fault in the priority queue implementation. In
the Insert procedure from the heap package, presented in Figure 5, we deleted
the not from the test of the while loop. We then re-ran the model checker for
(5p21) and detected the defect in essentially the same time as reported in Fig-
ure 4. SPIN produced a counter-example that gives the changes in the values of
the propositions along a path through the system on which the property does not
hold. The simulation output generated by SPIN from the counter example with
only the boolean variables for the predicates that appear in property specifica-
tion (5p21) is given in Figure 6. It is easy to see from this counter-example, that
the data is not dequeued in priority order (i.e., Priority(d1) > Priority(d2)).



procedure Insert (Heap : in out Heap Type; Object: in out Object_Type) is

Parent: natural := (Heap.Size + 1) / 2 ;
Child : natural := Heap.Size + 1 ;
begin

if (Heap.Size = Heap.Max_Size) then

raise Heap_Overflow ;

else

Heap.Size := Heap.Size + 1 ;

Initialize (Heap.Data.all(Heap.Size));

while (Parent>0) and then not ((Heap.Data.all(Parent)>=0bject)) loop
Swap (Heap.Data.all(Parent), Heap.Data.all (Child)) ;
Child := Parent ;
Parent:= Parent / 2 ;

end loop;

Swap (Object, Heap.Data.all(Child) ) ;

end if;

end Insert ;

Fig. 5. Insert procedure
53: proc 2 (driver_task) line 150 "pan_in" (state 143) [callEnqd2=1]
66: proc 2 (driver_task) line 165 "pan_in" (state 159) [callEnqd2=0]
119: proc 2 (driver_task) line 8179 "pan_in" (state 8916) [callEnqdl=1]
132: proc 2 (driver_task) line 8194 "pan_in" (state 8932) [callEnqd1=0]
191: proc 2 (driver_task) line 2227 "pan_in" (state 2402) [returnDeqd2=1]

Fig. 6. Reduced SPIN counter-example

This faulty result either indicates a defect in the implementation or some impre-
cision in the finite-state model. We use only one data abstraction (the 2-ordered
data abstraction) which is safe under the assumption that d1 and d2 are input
to the container at most once [12]. However, in the counter-example, d1 and d2
are enqueued only once and thus, the assumption is not violated. Having elimi-
nated the possibility of an imprecise abstraction the only conclusion is that the
implementation has a defect.

7.4 Research Issues

Our study revealed several interesting research issues that we intend to explore
in future work.

The properties we considered in this study are necessary partial specifications
of system behavior. They are admittedly incomplete, but useful nevertheless.
Our seeding, and subsequent detection, of faults in container implementations
illustrates their utility. A more thorough study of the kinds of faults that can
be revealed by such specifications would provide a better understanding of the
breadth of applicability of model checking for fault-detection.

In [12], we use abstract interpretations of the behavior of container imple-
mentations in checking properties of systems that use containers. These Als are
finite-state, thus it would be possible to encode them as an LTL formula and to



check that property against container implementations. This would essentially
liftt model checking results for containers up to model checking of applications
and provide a practical illustration of the reuse of verification results.

8 Conclusions

We have applied existing model checking tools to validation of the correctness
of common container data structure implementations. In doing this, we have
illustrated how crucial correctness properties of these systems can be encoded in
LTL. We have applied a methodology that incorporates techniques from abstract
interpretation and partial evaluation to construct finite-state models from the
source code of container implementations. We believe that this study demon-
strates the potential of model checking as a practical means of detecting faults
in general purpose software components. This work raises a number of research
issues whose study may further expand the breadth of applicability of model
checking to common types of software systems.

Acknowledgements: The authors would like to thank James Corbett and George
Avrunin for making the INCA toolset available to us, for enhancing its predicate
definition capabilities, and for many valuable discussions about model genera-
tion.

References

1. J.-R. Abrial, E. Borger, and H. Langmaack. Formal Methods for Industrial Appli-
cations: Specifying and Programming the Steam Boiler Control. Lecture Notes in
Computer Science, 1165. Springer-Verlag, Oct. 1996.

2. G. Avrunin, U. Buy, J. Corbett, L. Dillon, and J. Wileden. Automated analysis
of concurrent systems with the constrained expression toolset. IEEE Transactions
on Software Engineering, 17(11):1204-1222, Nov. 1991.

3. J. Beidler. The Scranton generic data structure suite. http://academic.uofs.
edu/faculty/beidler/ADA/default.html, 1996.

4. E. Clarke, O. Grumberg, H. Hiraishi, S. Jha, D. Long, K. McMillan, and L. Ness.
Verification of the future-bus+ cache coherence protocol. Formal Methods in Sys-
tem Design, 6(2), 1995.

5. J. Corbett. Evaluating deadlock detection methods for concurrent software. IEEE
Transactions on Software Engineering, 22(3), Mar. 1996.

6. P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model for static
analysis of programs by construction or approximation of fixpoints. In Conference
Record of the Fourth Annual ACM Symposium on Principles of Programming Lan-
guages, pages 238252, 1977.

7. D. Craigen, S. Gerhart, and T. Ralston. An international survey of industrial
applications of formal methods. Technical report, National Institute of Standards
and Technology, Mar. 1993.

8. J. Davies and J. Woodcock. Using Z: Specification, Refinement and Proof. Prentice
Hall, 1996.



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

D. Dill, A. Drexler, A. Hu, and C. H. Yang. Protocol verfication as a hardware
design aid. In Proceedings of the IEEE International Conference on Computer D
estgn: VLSI in Computers and Processors, pages 522-525, July 1992.

M. Dwyer, G. Avrunin, and J. Corbett. Patterns in property specifications for
finite-state verification. In Proceedings of the 21st International Conference on
Software Engineering, May 1999. to appear.

M. Dwyer and D. Schmidt. Limiting state explosion with filter-based refinement.
In Proceedings of the 1st International Workshop on Verification, Abstract Inter-
pretation and Model Checking, Oct. 1997.

M. B. Dwyer and C. S. Pisdreanu. Filter-based model checking of partial systems.
In Proceedings of the Sizth ACM SIGSOFT Symposium on Foundations of Software
Engineering, Nov. 1998.

M. B. Dwyer, C. S. Pasireanu, and J. C. Corbett. Translating ada programs for
model checking : A tutorial. Technical Report 98-12, Kansas State University,
Department of Computing and Information Sciences, 1998.

J. Hatcliff, M. B. Dwyer, and S. Laubach. Staging static analysis using abstraction-
based program specialization. In LNCS 1490. Principles of Declarative Program-
ming 10th International Symposium, PLILP’98, Sept. 1998.

D. Hoffman and R. Snodgrass. Trace specifications: Methodology and models.
IEEE Transactions on Software Engineering, 14(9):1243-1252, Sept. 1988.

G. Holzmann. The model checker SPIN. IEEE Transactions on Software Engi-
neering, 23(5):279-294, May 1997.

C. Lewerentz and T. Lindner. Formal Development of Reactive Systems: Case
Study Production Cell. Lecture Notes in Computer Science, 891. Springer-Verlag,
Jan. 1995.

B. Liskov and J. V. Guttag. Abstraction and Specification in Program Develop-
ment. The MIT Electrical Engineering and Computer Science Series. MIT Press,
Cambridge, MA, 1986.

Z. Manna and A. Pnueli. The Temporal Logic of Reactive and Concurrent Systems:
Specification. Springer-Verlag, 1991.

K. McMillan. Symbolic Model Checking. Kluwer Academic Publishers, 1993.

G. Naumovich, L. Clarke, and L. Osterweil. Verification of communication pro-
tocols using data flow analysis. In Proceedings of the Fourth ACM SIGSOFT
Symposium on the Foundations of Software Engineering, Oct. 1996.

A. Pnueli. In transition from global to modular temporal reasoning about pro-
grams. In K. Apt, editor, Logics and Models of Concurrent Systems, pages 123-144.
Springer-Verlag, 1985.

P. Wolper. Specifying interesting properties of programs in propositional temporal
logics. In Proceedings of the 138th ACM Symposium on Principles of Programming
Languages, pages 184-193, St. Petersburg, Fla., Jan. 1986.



